

THERMASGARD® xx - wModbus

D Konfigurationsanleitung

Temperaturmessumformer, kalibrierfähig, mit **W-Modbus** (Wireless)

(GB) (USA) Configuration Instructions

Temperature measuring transducers, calibratable, with **W-Modbus** (Wireless)

(F) Instructions de configuration

Convertisseur de température, étalonnable, avec **W-Modbus** (Wireless)

RU Инструкции по настройке

Преобразователь температуры измерительный, калибруемый, с модулем **W-Modbus** (Wireless)

S+S REGELTECHNIK GMBH THURN-UND-TAXIS-STR. 22 90411 NÜRNBERG/GERMANY FON +49(0)911/51947-0 mail@SplusS.de

www.SplusS.de

THERMASGARD® xx - wModbus

W-Modbus-Sensor (Slave)

STATUS-LEDS

Die beiden LEDs L1 und L2 (rechts neben dem Pair-Taster) zeigen den Funkstatus des Sensors an. Diese sind nach dem Einschalten aktiv und werden nach ca. 30 Minuten automatisch deaktiviert. Bei Bedarf können die LEDs mittels Pair-Taster manuell reaktivert werden.

TELEGRAMM-LED

Die LED (links neben dem DIP-Schalter A) zeigt durch Blinken eine aktive Modbus-Kommunikation an. Bei Störung der Modbus-Verkabelung leuchtet die LED dauerhaft rot.

PAIR-TASTER

Der Taster "pair" ist mit verschiedenen Funktionen hinterlegt. Durch kurzen Tastendruck (Antippen) werden für ca. 30 Minuten die Status-LEDs aktiviert.

Durch langen Tastendruck (≥ 10 Sekunden) wird Pairing aktiviert. Die Deaktivierung erfolgt automatisch durch das Beenden des Anlernmodus am Master-Gateway.

Durch Tastendruck (ca. 3 Sekunden) wird Bluetooth aktiviert. Die Status-LED L2 blinkt grün. Das Gerät bleibt für ca. 60 Sekunden sichtbar und kann von der Lumenradio W-Modbus-App gefunden werden. Die Verbindung bleibt solange bestehen, bis in der App "Disconnect" gedrückt oder am Gerät der Anlernmodus aktiviert wird.

Weitere Informationen siehe "Konfiguration" (W-Modbus-App).

W-MODBUS-SENSOR

W-Modbus-Sensor (Slave)

ANLERNEN (PAIRING) "Slave"

Werkseitig steht die **Busadresse** auf "1" und kann über DIP-Schalter umgestellt werden (siehe Abschnitt "Modbus-Konfiguration"). Das Ändern der Busadresse ist jederzeit möglich, auch nach dem Koppeln an ein Gateway.

Zum Anlernen eines W-Modbus-Sensors (Slave) an ein Master-Gateway (DDC/SPS), müssen beide Geräte in den Pairing-Modus (Anlernmodus) gesetzt werden. Das gilt auch, wenn das Gerät in ein bestehendes Netzwerk integriert werden soll. Dabei werden automatisch auch bereits gekoppelte Teilnehmer in den Anlernmodus versetzt und neu angelernt. In der näheren Umgebung (Funkreichweite) darf sich immer nur ein einziges Master-Gateway im Pairing-Modus befinden!

Das Anlernen des W-Modbus-Sensors (Slave) – nachfolgend \underline{Sensor} genannt – erfolgt in drei einfachen Schritten:

1.	Pairing aktivieren (Verbindungen öffnen) Werkseitig befindet sich der Sensor automatisch im Anlernmodus. Das manuelle Aktivieren erfolgt mittels Pair-Tasters (langer Tastendruck ≥ 10 Sekunden). Die Status-LEDs signalisieren den aktiven Anlernmodus: L1 blinkt rot, L2 ist aus. Bei Displaygeräten wird (PAIRING) im Wechsel mit der eingestellten Busadresse angezeigt. Den Vorgang zum Aktivieren bzw. Deaktivieren des Anlernmodus am Master-Gateway (DDC/SPS) entnehmen Sie bitte der gerätespezifischen Bedienungsanleitung.	10 s pair	× 1 *	 L2 12
2.	Geräte koppeln (Verbindungsaufbau)	P arr	1 I	
	Im aktiven Anlernmodus sucht der Sensor automatisch nach einem Master- Gateway , das sich im Pairing befindet. Dieser Vorgang benötigt ca. 1-2 Minuten.			
	Die Status-LEDs zeigen den laufenden Prozess an: L1 blinkt rot – L2 leuchtet rot Bei Displaygeräten wird zunächst (PAIRING) angezeigt.		*	
	Anschließend zeigen die Status-LEDs die erfolgreiche Kopplung an: L1 blinkt grün – L2 leuchtet grün oder orange (je nach Qualität der Funkverbindung). Bei Displaygeräten wird nach erfolgter Verbindung (CONNECTE D) angezeigt.	pair	L1	L2
	Hinweis! Wird das Gerät mit einem Master-Gateway eines Drittanbieters gekoppelt, zeigen die Status-LEDs farblich abweichend an: L1 blinkt weiterhin rot – L2 leuchtet grün. Auf dem Display wird weiterhin [PAIRING] angezeigt.	pair	*	● L2
	Nun besteht eine temporäre Verbindung , die wie im 3. Schritt beschrieben gesichert werden kann. Nach ca. 2-3 Minuten kann bereits in dieser Phase die Modbus-Kommunikation getestet und Daten ausgetauscht werden.			
з.	Pairing deaktivieren (Verbindungen sichern)			
	Sind alle Geräte erfolgreich gekoppelt, muss der Anwender manuell am Master- Gateway das Pairing beenden . Hierdurch wird auch das Pairing an allen gekoppelten Geräten beendet.			
	Im Anschluss führt der Sensor einen Auto-Restart durch und bauen eine gesicherte Verbindung auf. Die Modbus-Kommunikation wird innerhalb 2-3 Minuten wiederhergestellt.	pair	L1	L2
	Die Status-LEDs zeigen den laufenden Restart an: zunächst sind L1 und L2 aus . Bei Displaygeräten wird kurzzeitig I NO NETWORK I angezeigt.			
	Anschließend zeigen die Status-LEDs die gesicherte Verbindung: L1 leuchtet grün – L2 leuchtet grün, orange oder rot (je nach Gualität der Funkverbindung). Bei Displaygeräten wird nach gesicherter Verbindung (SECURED) angezeigt.	pair	L 1	L 2
	Eine dauerhafte Verbindung ist somit hergestellt und bleibt auch nach einem Wiedereinschalten bestehen. Der Datenaustausch im Normalbetrieb kann beginnen.			
	HINWEISE	1s		
→	Status-LEDs gehen aus (LED L1 und L2 aus) LEDs deaktivieren sich nach einem Timeout von 30 Minuten automatisch. Mittels Pair-Taster (kurzer Tastendruck) können die LEDs reaktiviert werden.	pair		• L2
→	Error-Meldung (LEDs L1 und L2 rot blinkend – Displaygeräten zeigen [W-M ERR!] an.) Reset durchführen: Gerät für ca. 1 Minute von der Spannungsversorgung trennen, anschließend neu starten. Besteht der Fehler weiterhin, kontaktieren Sie bitte den S+S Technischen Support.	pair	₩ [* L2

(W-Modbus

Das **W-Modbus-Protokoll** basiert auf dem (2,4 GHz ISM-Funkband) und nutzt ein patentiertes Frequenzhopping um größtmögliche Zuverlässigkeit und Widerstandsfähigkeit gegenüber Störungen zu ermöglichen. Somit kann auch in industriellen Umgebungen auf eine sichere Funkübertragung vertraut werden.

Im W-Modbus-Netzwerk können an einem Gateway bis zu 100 Teilnehmer über eine große Entfernung (bis zu 500m Freifeld) miteinander kommunizieren. Ein standardisiertes W-Modbus-Modul gewährleistet die Kompatibilität zu allen W-Modbus-Geräten.

Die W-Modbus-Sensoren müssen lediglich mit Spannung versorgt werden. Manuell konfiguriert wird nur die Slaveadresse, die Übertragungsparameter (Baudrate und Parity) stellen sich automatisch ein. Ein Abschlusswiderstand ist nicht notwendig. Anschließend wird der Sensor an ein Gateway gekoppelt.

Das **W-Modbus-Gateway** kann an beliebiger Stelle im Modbus-Strang installiert werden. Es dient als Übergang zwischen kabelgebundenen Modbus und funkbasierten W-Modbus. Auch Mischformen von verdrahteten und funkbasierten Modbus-Geräten können über das W-Modbus-Gateway in bestehende Netztopologien problemlos eingebunden werden.

BUSADRESSE

Werkseitig steht die **Busadresse** auf "1" und kann über DIP-Schalter umgestellt werden. Das Ändern der Busadresse ist jederzeit möglich, auch nach dem Koppeln an ein Gateway. Bei Displaygeräten wird die geänderte Busadresse für ca. 30 Sekunden im Display angezeigt.

Konfiguration am Beispiel "193"

Busadresse (binärcodiert, Wertigkeit 1 bis 247 einstellbar)								DIP-Scha	alter [A]	
DIP 1	DIP 2	DIP 3	DIP 4	DIP 5	DIP 6	DIP 7	DIP 8		ON	DIP A
0 N	ON	OFF	OFF	OFF	OFF	OFF	ON			
128	64	32	16	8	4	2	1]	1234	5678

Die Geräteadresse im Bereich von 1 bis 247 (Binärformat) wird über den DIP-Schalter (A) eingestellt. Schalterstellung Pos. 1 bis 8 – siehe Tabelle auf Rückseite!

Die Adresse O ist für Broadcast-Meldungen reserviert, die Adressen größer 247 dürfen nicht belegt werden und werden vom Gerät ignoriert. Die DIP-Schalter sind binärcodiert mit folgender Wertigkeit:

DIP 1 =	128 DIP 1 = ON	
DIP 2 =	64 DIP 2 = ON	
DIP 3 =	32 DIP 3 = OFF	
DIP 4 =	16 DIP 4 = OFF	
DIP 5 =	8 DIP 5 = OFF	
DIP 6 =	4 DIP 6 = OFF	
DIP 7 =	2 DIP 7 = OFF	
DIP 8 =	1 DIP 8 = ON	

folgt die Modbus-Adresse 128 + 64 + 1 = 193

BUSPARAMETER

Die Busparameter für W-Modbus-Sensoren werden automatisch konfiguriert. Notwendige Einstellungen (wie z.B. Baudrate) werden direkt am W-Modbus-Gateway vorgenommen.

DIAGNOSE

Fehlerdiagnosefunktion integriert (siehe Tabelle "Function O8 Function O8 Diagnostics")

APP-MODUS

Die Lumenradio W-Modbus-App kann auf W-Modbus-Geräte zugreifen. Hierfür muss Bluetooth am Gerät manuell aktiveriert werden (mittels Pair-Taster). Anschließend ist das Gerät sichtbar und kann mit der App verbunden werden. Weitere Informationen siehe "Inbetriebnahme" (Pair-Taster).

Im App-Modus kann die Lumenradio W-Modbus-App auf das Gateway zugreifen:

- Firmwareupdates des Funkmoduls
- Fehlererkennung (doppelte Busadressen, Kommunikationsfehler etc.)
- Individuelle Gerätenamen
- Überprüfung des Netzwerkaufbaus
- Dokumentation des Netzwerkaufbaus (PDF)

Weitere Informationen sind über die Hilfe-Funktion in der App zu finden. Die App ist für Android- und Apple-Mobilgeräte im App-Store verfügbar.

Link zur Apple Lumenradio W-Modbus-App: https://apps.apple.com/de/app/w-modbus/id6472275984

Link zur Android Lumenradio W-Modbus-App: https://play.google.com/store/apps/details?id=com.lumenradio.wmodbus

(« W-Modbus

ANZEIGE IM DISPLAY

Der Anzeigewert ist abhängig vom eingestellten Einheitensystem (siehe Tabelle "Function O5 Write Single Coil"). Bei Bedarf kann das Geräte von SI (default) auf Imperiale Einheiten umgestellt werden.

Standardanzeige

Standardmäßig wird in der ersten Zeile der Wert und in der zweiten Zeile die entsprechende Einheit **statisch** angezeigt: **Temperatur** [°C] [°F]. Auflösung beträgt 1/10 des Wertes.

Fehleranzeige

Fühlerbruch und Fühlerkurzschluss werden erkannt und als **Fehler** gemeldet, dieser wird Geräten mit Display angezeigt. Über die Busabfrage ist der Fehlerstatus ebenso abrufbar.

Frei konfigurierbare Anzeige (Tyr 3)

Über die Modbusschnittstelle kann die Display-Anzeige sowohl im 7-Segment-Bereich als auch im Dot-Matrix-Bereich programmiert werden. Somit können auch beispielsweise Meldungen von der SPS angezeigt werden.

Für die **individuelle Anzeige** muss das Register 4x0001 (physikalischer Anzeigewert) den Wert 10 enthalten. Die Register 4x0002 bis 4x0022 enthalten Informationen über die darzustellenden Zeichen und Segmente. Die beiden linksbündigen Stellen werden über das Register 4x0003 (Bereich -9...99) dargestellt. Der Wert 0 schaltet die Anzeige der beiden Stellen ab. Die Anzeige ist nur aktiv, falls das Register 4x0002 positive Werte enthält.

In der **Defaulteinstellung** (Register 4x0001 enthält den Wert 0 für die Standardanzeige) sind im Dot-Matrix-Bereich die Zeichen I-Q (Register 4x0014 bis 4x0022) ebenfalls frei programmierbar. Im 7-Segment-Bereich wird dabei automatisch der aktuelle Messwert angezeigt.

Fortsetzung siehe nächste Seite!

Aufbau Segment-Muster (Register 4x0005)

ASCII-Code-Tabelle für Dot Matrix Anzeigebereich

ASCII	Sign		ASCII	Sign
32	Leer]	53	5
33	!		54	6
34	"]	55	7
35	#		56	8
36	\$]	57	9
37	%		58	:
38	3]	59	;
40	(60	<
41)]	61	=
42	*]	62	>
43	+]	63	?
44	,]	64	0
45	-		65	Α
46]	66	В
47	/		67	С
48	0		68	D
49	1]	69	E
50	2		70	F
51	3		71	G
52	4]	72	Н

CII Sign	ASCII
'3 I	73
'4 J	74
'5 K	75
'6 L	76
7 M	77
'8 N	78
'9 O	79
80 P	80
31 Q	81
12 R	82
3 S	83
34 T	84
15 U	85
6 V	86
37 W	87
18 X	88
9 Y	89
10 Z	90
1 [91
I3]	93

ASCII	Sign
94	^
95	_
96	\
97	а
98	b
99	C
100	d
101	е
102	f
103	g
104	h
105	i
106	j
107	k
108	I
109	m
110	n
111	0
112	р
113	q

ASCII	Sign
114	r
115	S
116	t
117	u
118	v
119	w
120	х
121	у
122	z
123	{
124	I
125	}
129	ü
132	ä
142	Ä
148	ö
153	Ö
154	Ü
223	0

Nicht in der Tabelle aufgeführte ASCII-Zeichen bzw. Steuerzeichen werden als Leerzeichen dargestellt.

TELEGRAMME

Function O4 Read Input Register

Register	Parameter		Data Type	Value	Range
3x0001	Temperatur	Ohne Filterung	Signed 16 Bit	-500+1500 -580+3020 -999+9999	– 50.0 +150.0 °C – 58.0 +302.0 °F Überlauf
3x0002	Temperatur	Filterung 1 s	Signed 16 Bit	-500+1500 -580+3020 -999+9999	– 50.0 +150.0 °C – 58.0 +302.0 °F Überlauf
3x0003	Temperatur	Filterung 10 s	Signed 16 Bit	-500+1500 -580+3020 -999+9999	– 50.0 +150.0 °C – 58.0 +302.0 °F Überlauf

Function O2 Read Discrete Input

Register	gister Parameter		Value	Range
0x0001	Fühlerfehler – Bruch	Bit O	0 / 1	ON - OFF
0x0002	Fühlerfehler – Kurzschluss	Bit 1	0 / 1	ON - OFF

Hinweis: Die Adressen 1x0003...1x0008 werden mit dem Wert "O" gelesen.

Function 05 Write Single Coil

Register	Parameter		Data Type	Value	Range
0x0001	reserviert				
0x0002	Einheitensystem	SI \rightarrow Imperial	Bit 1	0 / 1	SI (Default) -
	Temperatur	$[^{\circ}C] \rightarrow [^{\circ}F]$			Imperial

Function 06 Write Single Register & Function 16 Write Multiple Register

Register	Parameter (Display)	Data Type	Value	Range
4x0001	physikalischer Anzeigewert*	Unsigned 8 Bit	010	010
	Standardanzeige: Temperatur		0	Default- einstellung
	alternative Anzeige: frei konfigurierbare Anzeige		10	
4x0002	7-Segment Wert	Signed 16 Bit	-9999999	-9999999
4x0003	7-Segment Wert	Signed 8 Bit	-999	-999
4x0004	-			
4x0005	Segment Muster	Unsigned 16 Bit		siehe Bitmuster
4x0006	Dot Matrix Zeichen A	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0007	Dot Matrix Zeichen B	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0008	Dot Matrix Zeichen C	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0009	Dot Matrix Zeichen D	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0010	Dot Matrix Zeichen E	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0011	Dot Matrix Zeichen F	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0012	Dot Matrix Zeichen G	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0013	Dot Matrix Zeichen H	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0014	Dot Matrix Zeichen I	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0015	Dot Matrix Zeichen J	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0016	Dot Matrix Zeichen K	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0017	Dot Matrix Zeichen L	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0018	Dot Matrix Zeichen M	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0019	Dot Matrix Zeichen N	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0020	Dot Matrix Zeichen O	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0021	Dot Matrix Zeichen P	Unsigned 8 Bit	0255	ASCII-Zeichen
4x0022	Dot Matrix Zeichen Q	Unsigned 8 Bit	0255	ASCII-Zeichen

* Der Anzeigewert ist abhängig vom eingestellten Einheitensystem (siehe Tabelle "Function 05 Write Single Coil").

Function 08 Diagnostics

Folgende Sub Function Codes werden unterstützt

Sub Function Code	Parameter	Data Type	Antwort
00	Echo der Sendedaten (Loopback)		Echodaten
01	Neustart Modbus (Reset Listen Only Mode)		Echo Telegramm
04	Aktivierung Listen Only Mode		Keine Antwort
10	Lösche Zähler		Echo Telegramm
11	Zähler Bustelegramme	Unsigned 16 Bit	alle gültigen Bustelegramme
12	Zähler Kommunikationsfehler (Parity, CRC, Framefehler, etc.)	Unsigned 16 Bit	fehlerhafte Bustelegramme
13	Zähler Exception-Meldungen	Unsigned 16 Bit	Fehlerzähler
14	Zähler Slave-Telegramme	Unsigned 16 Bit	Slave-Telegramme
15	Zähler Telegramme ohne Antwort	Unsigned 16 Bit	Broadcastmeldungen (Adresse O)

Function 17 Report Slave ID Aufbau Antworttelegramm

Byte Nr.	Parameter	Data Type	Antwort
00	Byteanzahl	Unsigned 8 Bit	9
01	Slave ID (Device Type)	Unsigned 8 Bit	3 = THERMASGARD [®] xx-wModbus (Tyr3)
02	Slave ID (Device Class)	Unsigned 8 Bit	80 = KYM ASGARD [®] (Wireless)
03	Status	Unsigned 8 Bit	255 = RUN, 0 = STOP
04	Versionsnummer (Release)	Unsigned 8 Bit	19
05	Versionsnummer (Version)	Unsigned 8 Bit	199
06	Versionsnummer (Index)	Unsigned 8 Bit	1
07	Seriennummer 1	Unsigned 8 Bit	хх
08	Seriennummer 2	Unsigned 8 Bit	YY
09	Seriennummer 3	Unsigned 8 Bit	ZZ

W-Modbus sensor (slave)

STATUS LEDS

The two LEDs L1 and L2 (on the right of the "Pair" push-button) indicate the wireless state of the sensor. They activate after the system is switched on and **deactivate automatically** after approx. 30 minutes. If required, the LEDs can be reactivated manually using the "Pair" push-button.

TELEGRAM LED

The LED (on the left of DIP switch A) flashes to indicate that Modbus communication is active. If there is a fault in the Modbus cables, the LED lights up red steadily.

"PAIR" PUSH-BUTTON

Different functions are assigned to the "Pair" push-button. Briefly pressing the button (tap) activates the status LEDs for approx. 30 minutes.

A long press of the button (≥ 10 seconds) activates Pairing. Deactivation takes place automatically when you exit the Pairing mode on the master gateway.

A long press of the button (approx. 3 seconds) activates Bluetooth. The status LED L2 flashes green. The unit remains visible for approx. 60 seconds and can be detected by the Lumenradio **W-Modbus app**. The connection remains active until you press "Disconnect" in the app or activate Pairing mode on the unit.

For more information, see "Configuration" (W-Modbus app).

TELEGRAM LED

W-MODBUS SENSOR

W-Modbus sensor (slave)

PAIRING "Slave"

The **bus address** is set to "1" at the factory and can be changed using DIP switches (see "Modbus configuration" section). The bus address can be changed at any time, even after pairing to a gateway.

To pair a W-Modbus **sensor** (slave) to a master **gateway** (DDC/PLC), **both units** must be set to Pairing mode. This also applies if the unit needs to be integrated into an existing network. Nodes that have already been paired are also automatically set to Pairing mode and paired again. Only one master gateway may be in Pairing mode at any one time in the immediate vicinity (wireless range)!

The W-Modbus sensors (slave) – hereinafter referred to as the $\underline{\text{sensor}}$ - are paired in three simple steps:

10 s1. Activate pairing (open the connections) The **sensor** is automatically set to Pairing mode at the factory. Manual activation is performed by pressing the "Pair" push-button (long push of button for \geq 10 seconds). The status LEDs indicate that Pairing mode is active: L1 flashes red, L2 is turned off. On display units, [PAIRING] is shown alternately with the configured bus address. Please refer to the unit-specific operating instructions for the procedure for activating or deactivating Pairing mode on the master gateway (DDC/PLC). 1.1 2. Pair the units (set up a connection) When Pairing mode is active, the sensor automatically searches for a gateway that is set to Pairing. This process can take approx. 1-2 minutes. The status LEDs indicate the running processes: L1 flashes red - L2 is lit red [PAIRING] is shown first on display units. The status LEDs then indicate successful pairing: L1 flashes green -L2 is lit green or orange (depending on the quality of the wireless connection). On display units, [CONNECTED] is shown after successful connection. Note! If the unit is paired with a master gateway from a third-party provider, the status LEDs indicate using different colours: L1 continues flashing red - L2 is lit green. [PAIRING] remains showing on the display. Now there is a temporary connection that can be secured as described in step 3. After approx. 2 - 3 minutes, you can already test the Modbus communication and exchange data in this phase. 3. Deactivate pairing (secure the connections) After all units have paired successfully, the user must manually terminate pairing on the master gateway. This also terminates pairing on all paired units. The sensor then performs an auto-restart and a secure connection is established Modbus communication is re-established within 2-3 minutes The status LEDs indicate the ongoing restart: first, L1 and L2 turn off. On display units, [NO NETWORK] is shown briefly. The status LEDs then indicate that the connection is secure: L1 is lit green -L2 is lit green, orange or red (depending on the quality of the wireless connection). On display units, [SECURED] is shown after the connection is secured. A permanent connection is now established and remains even after the unit is restarted. Data exchange can begin in standard mode. 1 5 NOTES Status LEDs turn off (LED L1 and L2 turn off)

 \rightarrow LEDs deactivate automatically after a 30-minute time-out. The LEDs can be reactivated using the pair button (short push of button).

Error message (LEDs L1 and L2 flashing red – Display units show [W-M ERR!].)
→ Perform a reset: disconnect the unit from the power supply for approx. 1 minute, then switch it on again. If the error persists, please contact S+S Technical Support.

General bus topology structure with terminating and bias resistors (Mixed configuration) MODBUS RTU-Master 5 V Pull-up / bias resistor R_{BIAS} A (D1) D+ Line termination RAB B (D0) D-Pull-down / bias resistor RBIAS Common (GND) W-MODBUS MODBUS MODBUS Slave Slave (((R_{AB} MODBUS W-MODBUS W-MODBUS MODBUS way (Node) Slave 1 (max 100) R_{AB} (((; R_A W-MODBUS MODBUS MODBUS MODBUS Gate way (Node Pro) Slave 1 Slave 2 Slave n (max. 16)

(W-Modbus

The **W-Modbus protocol** is based on the 2.4 GHz ISM radio band and employs a patented frequency hopping technology to maximise reliability and resistance to interference.

This means that reliable radio transmission can also be ensured in industrial environments.

In the **W-Modbus network**, up to 100 nodes can communicate with each other over a long distance of up to 500 m (open field) using one gateway. A standardised W-Modbus module ensures compatibility with all W-Modbus units.

The **W-Modbus sensors** only need to be supplied with power. Only the slave address is configured manually, the transmission parameters (baud rate and parity) are set automatically. No terminating resistor is required. The sensor is then paired with a gateway.

The **W-Modbus gateway** can be installed anywhere along the Modbus line. It serves as a junction between a wired Modbus and radio-based W-Modbus. Even mixed configurations of wired and radio-based Modbus units can be easily integrated into existing network topologies via the W-Modbus gateway.

BUS ADDRESS

The **bus address** is set to "1" at the factory and can be changed using DIP switches. The bus address can be changed at any time, even after pairing to a gateway. With display units, the modified bus address is shown on the display for approx. 30 seconds.

Configuration using "193" as an example

Bus adress (binary coded, value selectable from 1 to 247)								DIP switch [A]	
DIP 1	DIP 2	DIP 3	DIP 4	DIP 5	DIP 6	DIP 7	DIP 8		ON DI	ΡΑ
ON	O N	OFF	OFF	OFF	OFF	OFF	ON			
128	64	32	16	8	4	2	1]	1234567	78

The **device address** in the range of **1 to 247** is set at DIP switch [A]. For switch positions 1 to 8 see the table on the back!

Address 0 is reserved for broadcast messages. Addresses greater than 247 must not be assigned and are ignored by the device. The DIP switches are binary-coded with the following values:

DIP	1	=	128	 DIP	1	=	ON
DIP	2	=	64	 DIP	2	=	ON
DIP	3	=	32	 DIP	3	=	OFF
DIP	4	=	16	 DIP	4	=	OFF
DIP	5	=	8	 DIP	5	=	OFF
DIP	6	=	4	 DIP	6	=	OFF
DIP	7	=	2	 DIP	7	=	OFF
DIP	8	=	1	 DIP	8	=	ON

The switch positions shown here result in the Modbus address 128 + 64 + 1 = 193

BUS PARAMETERS

The bus parameters for W-Modbus sensors are automatically configured. The required settings (e.g. baud rate) are made directly on the W-Modbus gateway.

DIAGNOSTICS

Integrated fault diagnostics function (see "Function O8 Diagnostics" table)

APP MODE

The Lumenradio W-Modbus app can access W-Modbus units. To do this, Bluetoath must be activated manually on the unit (using the "Pair" push-button). The unit then becomes visible and can be connected via the app. For further information, see "Commissioning" ("Pair" push-button)

In App mode, the Lumenradio W-Modbus app can access the gateway:

- Firmware updates of the wireless module
- Error detection (duplicate bus addresses, communication errors, etc.)
- Individual unit names
- Checking the network setup
- Documentation of the network setup (PDF)

You can find more information via the help function in the app. The app is available for Android and Apple mobile devices through the app store.

Link for Apple Lumenradio W-Modbus app: https://apps.apple.com/de/app/w-modbus/id6472275984

Link for Android Lumenradio W-Modbus app: https://play.google.com/store/apps/details?id=com.lumenradio.wmodbus

(W-Modbus

READOUT IN THE DISPLAY

The display value depends on the set unit system (see table "Function 05 Write Single Coil"). If required, the unit can be switched from SI (default) to imperial units.

Standard display

By default, the first line indicates the value while the second line indicates the corresponding unit statically: temperature [°C] [°F]. Resolution is 1/10 of values.

Error display

Sensor breakage and sensor short circuit are detected and reported as an **error**, which is indicated on devices equipped with a display. The error status can also be retrieved by means of a bus query.

Freely configurable display (Tyr 3)

The Modbus interface allows the display screen to be individually configured, both in the 7 segment range and in the dot-matrix range. This means that messages such as those from the PLC can be displayed.

For the **individual display**, the register 4x0001 (physical display value) must contain the value 10. The registers 4x0002 to 4x0022 contain information about the characters and segments to be displayed. The two left-aligned positions are represented by the register 4x0003 (range -9...99). The value 0 switches off the display of both positions. The display is only active if the register 4x0002 has positive values.

In the **default setting** (register 4x0001 contains the value 0 for the standard display), even the characters I-Q (registers 4x0014 to 4x0022) are freely programmable in the dot-matrix range. In this case, the current measured value is automatically displayed in the 7-segment area.

Continued on next page!

Composition of Segment Pattern (Register 4x0005)

ASCII Code Table for Dot Matrix Display Area

ASCII	Sign	ASCII	Sign
32	Leer	53	5
33	!	54	6
34	"	55	7
35	#	56	8
36	\$	57	9
37	%	58	:
38	8	59	;
40	(60	<
41)	61	=
42	*	62	>
43	+	63	?
44	,	64	0
45	-	65	Α
46		66	В
47	/	67	С
48	0	68	D
49	1	69	E
50	2	70	F
51	3	71	G
52	4	72	Н

ASCII	Sign
73	I
74	J
75	к
76	L
77	М
78	N
79	0
80	Р
81	Q
82	R
83	S
84	Т
85	U
86	V
87	w
88	х
89	Y
90	Z
91	[
93]

ASCII	Sign
94	^
95	-
96	
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i
106	j
107	k
108	Ι
109	m
110	n
111	o
112	р
113	q

ASCII	Sign
114	r
115	S
116	t
117	u
118	v
119	w
120	х
121	у
122	z
123	{
124	I
125	}
129	ü
132	ä
142	Ä
148	ö
153	Ö
154	Ü
223	•

ASCII characters or control characters not listed in the table are displayed as spaces.

TELEGRAMS

Function O4 Read Input Register

Register	Parame	Data Type	Value	Range	
3x0001	Temperature	Without filtering	Signed 16 Bit	-500+1500 -580+3020 -999+9999	– 50.0 +150.0 °C – 58.0 +302.0 °F Overflow
3x0002	Temperature	Filtering 1s	Signed 16 Bit	- 500+ 1500 - 580+ 3020 - 999+ 9999	– 50.0 +150.0 °C – 58.0 +302.0 °F Overflow
3x0003	Temperature	Filtering 10s	Signed 16 Bit	-500+1500 -580+3020 -999+9999	– 50.0 +150.0 °C – 58.0 +302.0 °F Overflow

Function O2 Read Discrete Input

Register	Parameter	Data Type	Value	Range
0x0001	Sensor error – breakage	Bit O	0 / 1	ON - OFF
0x0002	Sensor error – short circuit	Bit 1	0 / 1	ON - OFF

Note: The addresses 1x0003...1x0008 are read with the value ${\ensuremath{\tt n}}0^{\circ}.$

Function 05 Write Single Coil

Register	Parameter			Data Type	Value	Range
0x0001	reserved					
0x0002	System of units	SI	\rightarrow Imperial	Bit 1	0 / 1	SI (Default) -
	Temperature	[°C]	→ [°F]			Imperial

Function 06 Write Single Register & Function 16 Write Multiple Register

Register	Parameter (Display)	Data Type	Value	Range
4x0001	Physical parameter displayed*	Unsigned 8 Bit	010	010
	Standard display: Temperature		0	Default setting
	Alternative display: Freely configurable display		10	
4x0002	7-Segment Value	Signed 16 Bit	-9999999	-9999999
4x0003	7-Segment Value	Signed 8 Bit	-999	-999
4x0004	-			
4x0005	Segment Pattern	Unsigned 16 Bit		See Binary Pattern
4x0006	Dot Matrix Character A	Unsigned 8 Bit	0255	ASCII character
4x0007	Dot Matrix Character B	Unsigned 8 Bit	0255	ASCII character
4x0008	Dot Matrix Character C	Unsigned 8 Bit	0255	ASCII character
4x0009	Dot Matrix Character D	Unsigned 8 Bit	0255	ASCII character
4x0010	Dot Matrix Character E	Unsigned 8 Bit	0255	ASCII character
4x0011	Dot Matrix Character F	Unsigned 8 Bit	0255	ASCII character
4x0012	Dot Matrix Character G	Unsigned 8 Bit	0255	ASCII character
4x0013	Dot Matrix Character H	Unsigned 8 Bit	0255	ASCII character
4x0014	Dot Matrix Character I	Unsigned 8 Bit	0255	ASCII character
4x0015	Dot Matrix Character J	Unsigned 8 Bit	0255	ASCII character
4x0016	Dot Matrix Character K	Unsigned 8 Bit	0255	ASCII character
4x0017	Dot Matrix Character L	Unsigned 8 Bit	0255	ASCII character
4x0018	Dot Matrix Character M	Unsigned 8 Bit	0255	ASCII character
4x0019	Dot Matrix Character N	Unsigned 8 Bit	0255	ASCII character
4x0020	Dot Matrix Character O	Unsigned 8 Bit	0255	ASCII character
4x0021	Dot Matrix Character P	Unsigned 8 Bit	0255	ASCII character
4x0022	Dot Matrix Character Q	Unsigned 8 Bit	0255	ASCII character

* The display value depends on the set unit system (see table "Function 05 Write Single Coil").

Function 08 Diagnostics

The following sub function codes are supported

Sub Function Code	Parameter	Data Type	Answer
00	Echo of transmission data (Loopback)		Echo data
01	Restart Modbus (Reset listen-only mode)		Echo telegram
04	Activation listen-only mode		No answer
10	Delete counter		Echo telegram
11	Counter bus telegrams	Unsigned 16 Bit	All valid bus telegrams
12	Counter communication errors (Parity, CRC, frame errors, etc.)	Unsigned 16 Bit	Faulty bus telegrams
13	Counter exception telegrams	Unsigned 16 Bit	Error counter
14	Counter slave telegrams	Unsigned 16 Bit	Slave telegrams
15	Counter telegrams without answer	Unsigned 16 Bit	Broadcast messages (address 0)

Function 17 Report Slave ID Composition of answer telegram

Byte No.	Parameter	Data Type	Answer
00	Number of bytes	Unsigned 8 Bit	9
01	Slave ID (device type)	Unsigned 8 Bit	3 = THERMASGARD [®] xx-wModbus (Tyr3)
02	Slave ID (device class)	Unsigned 8 Bit	80 = KYM ASGARD [®] (Wireless)
03	Status	Unsigned 8 Bit	255 = RUN, 0 = STOP
04	Version number (release)	Unsigned 8 Bit	19
05	Version number (version)	Unsigned 8 Bit	199
06	Version number (index)	Unsigned 8 Bit	1
07	Serial number 1	Unsigned 8 Bit	хх
08	Serial number 2	Unsigned 8 Bit	YY
09	Serial number 3	Unsigned 8 Bit	ZZ

Capteur W-Modbus (slave)

LED D'ÉTAT

Les deux LED L1 et L2 (à droite à côté du bouton Pair) indiquent l'état radio du capteur. Elles sont activées après la mise en marche et automatiquement désactivées après env. 30 minutes. Si nécessaire, les LED peuvent être réactivées manuellement à l'aide du bouton Pair.

LED DE TÉLÉGRAMME

La LED (à gauche à côté du commutateur DIP A) indique une communication Modbus active en clignotant. En cas de défaut du câblage Modbus, la LED reste allumée en rouge.

BOUTON PAIR

Le bouton « pair » est doté de différentes fonctions.

Une brève pression sur ce bouton (effleurement) permet d'activer les LED d'état pendant env. 30 minutes.

Une pression prolongée sur ce bouton (≥ 10 secondes) permet d'activer l'appairage. La désactivation a lieu automatiquement lorsque le mode d'apprentissage est quitté sur la passerelle maître.

Une pression sur ce bouton (env. 3 secondes) permet d'activer le Bluetooth. La LED d'état L2 clignote en vert. L'appareil reste visible pendant env. 60 secondes et peut être trouvé par l'application W-Modbus de Lumenradio. La connexion reste en place jusqu'à ce que l'utilisateur appuie sur « Disconnect » dans l'application ou active le mode d'apprentissage sur l'appareil.

Voir « Configuration » (application W-Modbus) pour plus d'informations.

CAPTEUR W-MODBUS

APPRENTISSAGE (PAIRING) « Slave »

L'adresse du bus est réglée sur « 1 » en usine et peut être modifiée à l'aide du commutateur DIP (voir section « Configuration Modbus »). Cette modification est possible à tout moment, même après le couplage à une passerelle.

Pour la programmation par apprentissage d'un **capteur** W-Modbus (esclave) sur une **Gateway** maître (DDC/API), les **deux appareils** doivent être réglés sur le mode d'appairage (mode d'apprentissage). Cela vaut également lorsque l'appareil doit être intégré dans un réseau existant. Ce faisant, même les périphériques déjà couplés sont automatiquement mis en mode d'apprentissage et reprogrammés par apprentissage. Dans l'environnement proche (portée radio), il ne doit y avoir qu'une seule passerelle maître en mode d'appairage !

La programmation par apprentissage du **capteur** W-Modbus (slave) – ci-après désigné comme <u>capteur</u> – se fait en trois étapes simples :

REMARQUES

Les LED d'état s'éteignent (LED L1 et L2 éteintes) → Les LED se désactivent automatiquement après un délai de 30 minutes.

Les LED peuvent être réactivées à l'aide du bouton Pair (brève pression sur ce bouton).

Message d'erreur (les LED L1 et L2 clignotent en rouge – Les appareils à écran affichent [W-M ERR!].)

→ Effectuer une réinitialisation : couper l'appareil pendant env. 1 minute de l'alimentation en tension, puis redémarrer. Si l'erreur persiste, veuillez contacter l'assistance technique S+S.

	*	*
pair	L1	L2

((• W-Modbus

Le **protocole W-Modbus** est basé sur la bande ISM de 2,4 GHz et utilise un saut de fréquence breveté afin d'offrir une fiabilité et une immunité au brouillage maximales.

Il est ainsi possible de compter sur une transmission radio sûre, même dans les environnements industriels.

Sur le **réseau W-Modbus**, jusqu'à 100 périphériques reliés à une passerelle peuvent communiquer entre eux sur une grande distance (jusqu'à 500 m en champ libre). Un module W-Modbus standardisé garantit la compatibilité avec tous les appareils W-Modbus.

Les capteurs W-Modbus doivent seulement être alimentés en tension. Seule l'adresse esclave doit être configurée manuellement, les paramètres de transmission (taux de transfert en bauds et parité) se règlent automatiquement. Une résistance de terminaison n'est pas nécessaire. Le capteur est ensuite couplé à une passerelle.

La **passerelle W-Modbus** peut être installée à n'importe quel endroit de la chaîne Modbus. Elle sert de jonction entre le Modbus câblé et le W-Modbus radio. Des formes mixtes d'appareils Modbus câblés et radio peuvent également être intégrées sans problème dans des topologies de réseau existantes via la passerelle W-Modbus.

ADRESSE DU BUS

L'adresse du bus est réglée sur « 1 » en usine et peut être modifiée à l'aide du commutateur DIP. Cette modification est possible à tout moment, même après le couplage à une passerelle. Dans le cas des appareils à écran, l'adresse du bus modifiée s'affiche à l'écran pendant env. 30 secondes.

Configuration avec « 193 » pour exemple

Adresse du bus (code binaire, valance réglable de 1 à 247)								Interrupteur DIP [A]	
DIP 1	DIP 2	DIP 3	DIP 4	DIP 5	DIP 6	DIP 7	DIP 8		ON DIP A
0 N	ON	OFF	OFF	OFF	OFF	OFF	ON		
128	64	32	16	8	4	2	1]	12345678

L'adresse de l'appareil dans une plage de 1 à 247 (format binaire) est réglée via l'interrupteur DIP (A). Position interrupteur 1 à 8 – voir tableau au verso !

L'adresse O est réservée pour des messages de broadcast, les adresses dépassant 247 ne doivent pas être occupées et sont ignorées par l'appareil. Les interrupteurs DIP sont codés en binaire avec les valences suivantes :

DIP 1	l	=	128	 DIP	1	=	ON
DIP 2	2	=	64	 DIP	2	=	ON
DIP 3	3	=	32	 DIP	3	=	OFF
DIP 4	1	=	16	 DIP	4	=	OFF
DIP 5	5	=	8	 DIP	5	=	OFF
DIP 6	3	=	4	 DIP	6	=	OFF
DIP 7	7	=	2	 DIP	7	=	OFF
DIP 8	3	=	1	 DIP	8	=	ON

L'exemple montre 128 + 64 + 1 = 193 comme adresse Modbus.

PARAMÈTRES DU BUS

Les paramètres du bus pour les capteurs W-Modbus sont configurés automatiquement. Les réglages nécessaires (par ex. taux de transfert en bauds) sont effectués directement sur la passerelle W-Modbus.

DIAGNOSTIC

Fonction de diagnostic de défauts intégrée (voir tableau « Function O8 Function O8 Diagnostics »)

MODE APPLICATION

L'application W-Modbus de Lumenradio peut accéder aux appareils W-Modbus. Pour cela, le Bluetooth doit être activé manuellement sur l'appareil (à l'aide du bouton Pair). L'appareil est ensuite visible et peut être connecté à l'application. Voir « Mise en service » (bouton Pair) pour plus d'informations.

En mode Application, l'application W-Modbus de Lumenradio peut accéder à la passerelle :

- Mises à jour du firmware du module radio
- Détection des erreurs (doublons d'adresses de bus, erreurs de communication, etc.)
- Noms d'appareils individuels
- Vérification de l'établissement du réseau
- Documentation de l'établissement du réseau (PDF)

De plus amples informations figurent dans la fonction Aide de l'application. L'application est disponible dans l'App Store pour les appareils mobiles Android et Apple.

Lien vers Apple Application W-Modbus Lumenradio : https://apps.apple.com/de/app/w-modbus/id6472275984

Lien vers Android Application W-Modbus Lumenradio : https://play.google.com/store/apps/details?id=com.lumenradio.wmodbus

(« W-Modbus

AFFICHAGE SUR L'ÉCRAN

La valeur d'affichage dépend du système d'unités réglé (voir tableau « Fonction 05 Write Single Coil »). Si nécessaire, l'appareil peut être commuté de **Si** (par défaut) sur **Impéria**l.

Affichage standard

Par défaut, la valeur est affichée sur la première ligne et l'unité correspondante est affichée **de manière statique** sur la seconde ligne :

Température [°C] [°F]. La résolution est de 1/10 de la valeur.

Affichage d'erreur

Une sonde coupée ou en court-circuit est détectée et signalée comme **Erreur** celle-ci s'affiche sur les appareils avec écran. Le statut d'erreur peut également être appelé via la requête bus.

Affichage librement configurable (Tyr 3)

Via l'interface Modbus, l'affichage de l'écran peut aussi bien être programmé dans la zone à 7 segments que dans la zone de matrice de point. Il est ainsi possible, par exemple, d'afficher les messages de l'API.

Pour l'affichage individuel, le registre 4x0001 (valeur d'affichage physique) doit contenir la valeur 10. Les registres 4x0002 à 4x0022 contiennent des informations sur les caractères et segments à afficher. Les deux positions à gauche sont représentées via le registre 4x0003 (plage -9...99). La valeur 0 désactive l'affichage des deux positions. L'affichage est uniquement actif lorsque le registre 4x0002 contient des valeurs positives.

Dans le **réglage par défaut** (le registre 4x0001 contient la valeur 0 pour l'affichage standard), les caractères I-Q (registres 4x0014 à 4x0022) sont également librement programmables dans la zone de matrice de points. Dans la zone à 7 segments, la valeur de mesure actuelle s'affiche automatiquement.

Suite voir page suivante !

Structure du modèle du segment (registre 4x0005)

Tableau des codes ASCII pour la zone d'affichage de la matrice de points

ASCII	Sign	
32	Espace	
33	!	
34	"	
35	#	
36	\$	
37	%	
38	&	
40	(
41)	
42	*	
43	+	
44	,	
45	-	
46		
47	/	
48	0	
49	1	
50	2	
51	3	
52	4	

SCII	Sign	
53	5	
54	6	
55	7	
56	8	
57	9	
58	:	
59	;	
60	<	
61	=	
62	>	
63	?	
64	0	
65	Α	
66	В	
67	С	
68	D	
69	E	
70	F	
71	G	
72	н	

ASCII	Sign
73	1
74	J
75	К
76	L
77	М
78	N
79	0
80	Р
81	Q
82	R
83	S
84	Т
85	U
86	V
87	W
88	Х
89	Y
90	Z
91	[
93]

Sign	ASCII
^	94
_	95
\	96
а	97
b	98
С	99
d	100
е	101
f	102
g	103
h	104
i	105
j	106
k	107
1	108
m	109
n	110
O	111
р	112
a	113

ASCII	Sign
114	r
115	S
116	t
117	u
118	v
119	w
120	х
121	у
122	z
123	{
124	I
125	}
129	ü
132	ä
142	Ä
148	ö
153	Ö
154	Ü
223	۰

Les caractères ASCII ou de contrôle qui ne figurent pas dans le tableau sont présentés par des espaces.

TÉLÉGRAMMES

Function O4 Read Input Register

Registre	Paramètres	Data Type	Value	Range	
3x0001	Température	Sans filtrage	Signed 16 Bit	-500+1500 -580+3020 -999+9999	– 50.0 +150.0 °C – 58.0 +302.0 °F Dépassement
3x0002	Température	Filtrage 1s	Signed 16 Bit	-500+1500 -580+3020 -999+9999	–50.0 +150.0 °C –58.0 +302.0 °F Dépassement
3x0003	Température	Filtrage 10s	Signed 16 Bit	-500+1500 -580+3020 -999+9999	–50.0 +150.0 °C –58.0 +302.0 °F Dépassement

Function O2 Read Discrete Input

Registre	Paramètres	Data Type	Value	Range
0x0001	Erreur sonde - coupure	Bit O	0 / 1	ON - OFF
0x0002	Erreur sonde - court-circuit	Bit 1	0 / 1	ON - OFF

Remarque: Les adresses 1x0003...1x0008 sont lues avec la valeur « 0 ».

Function 05 Write Single Coil

Registre	Paramètres		Data Type	Value	Range
0x0001	réservés				
0x0002	Système d'unités	SI → Impérial	Bit 1	0 / 1	SI (Default) -
	Température	[°C] → [°F]			Imperial

Function 06 Write Single Register & Function 16 Write Multiple Register

Registre	Paramètres (écran)	Data Type	Value	Range
4x0001	Valeur d'affichage physique*	Unsigned 8 Bit	010	010
	Affichage standard : Température		0	Réglage par défaut
	Affichage alternatif : Affichage librement configurable		10	
4x0002	Valeur 7 segments	Signed 16 Bit	-9999999	-9999999
4x0003	Valeur 7 segments	Signed 8 Bit	-999	-999
4x0004	-			
4x0005	Modèle du segment	Unsigned 16 Bit		voir le modèle binaire
4x0006	Matrice de points caractère A	Unsigned 8 Bit	0255	Caractères ASCII
4x0007	Matrice de points caractère B	Unsigned 8 Bit	0255	Caractères ASCII
4x0008	Matrice de points caractère C	Unsigned 8 Bit	0255	Caractères ASCII
4x0009	Matrice de points caractère D	Unsigned 8 Bit	0255	Caractères ASCII
4x0010	Matrice de points caractère E	Unsigned 8 Bit	0255	Caractères ASCII
4x0011	Matrice de points caractère F	Unsigned 8 Bit	0255	Caractères ASCII
4x0012	Matrice de points caractère G	Unsigned 8 Bit	0255	Caractères ASCII
4x0013	Matrice de points caractère H	Unsigned 8 Bit	0255	Caractères ASCII
4x0014	Matrice de points caractère l	Unsigned 8 Bit	0255	Caractères ASCII
4x0015	Matrice de points caractère J	Unsigned 8 Bit	0255	Caractères ASCII
4x0016	Matrice de points caractère K	Unsigned 8 Bit	0255	Caractères ASCII
4x0017	Matrice de points caractère L	Unsigned 8 Bit	0255	Caractères ASCII
4x0018	Matrice de points caractère M	Unsigned 8 Bit	0255	Caractères ASCII
4x0019	Matrice de points caractère N	Unsigned 8 Bit	0255	Caractères ASCII
4x0020	Matrice de points caractère O	Unsigned 8 Bit	0255	Caractères ASCII
4x0021	Matrice de points caractère P	Unsigned 8 Bit	0255	Caractères ASCII
4x0022	Matrice de points caractère Q	Unsigned 8 Bit	0255	Caractères ASCII

* La valeur d'affichage dépend du système d'unités réglé (voir tableau « Fonction 05 Write Single Coil »).

Function 08 Diagnostics

Les codes sous-fonction suivants sont pris en charge

Code sous- fonction	Paramètres	Data Type	Réponse
00	Écho des données d'émission (loopback-rebouclage)		Données d'écho
01	Redémarrage Modbus (Reset Listen Only Mode – Réinit Mode Écoute Seule)		Télégramme d'écho
04	Activation Listen Only Mode (mode Écoute seule)		Pas de réponse
10	Efface compteur		Télégramme d'écho
11	Compteur Télégrammes de bus	Unsigned 16 Bit	Tous les télégrammes de bus valides
12	Compteur Erreur de communication (Parité, CRC, erreur Frame, etc.)	Unsigned 16 Bit	Télégrammes de bus erronés
13	Compteur Messages d'exception	Unsigned 16 Bit	Compteur d'erreurs
14	Compteur Télégrammes esclaves	Unsigned 16 Bit	Télégrammes esclaves
15	Compteur Télégrammes sans réponse	Unsigned 16 Bit	Message de Broadcast (adresse A)

Function 17 Report Slave ID Structure du télégramme de réponse

n° de byte	Paramètres	Data Type	Réponse
00	Nombre de bytes	Unsigned 8 Bit	9
01	ID esclave (Device Typ)	Unsigned 8 Bit	3 = THERMASGARD [®] xx-wModbus (Tyr3)
02	ID esclave (Device Class)	Unsigned 8 Bit	80 = KYM ASGARD [®] (Wireless)
03	Statut	Unsigned 8 Bit	255 = RUN, 0 = STOP
04	Numéro de version (release)	Unsigned 8 Bit	19
05	Numéro de version (version)	Unsigned 8 Bit	199
06	Numéro de version (index)	Unsigned 8 Bit	1
07	Numéro de série 1	Unsigned 8 Bit	XX
08	Numéro de série 2	Unsigned 8 Bit	YY
09	Numéro de série 3	Unsigned 8 Bit	ZZ

Датчик W-Modbus (ведомое устройство)

СВЕТОДИОДЫ СОСТОЯНИЯ

Оба светодиодных индикатора L1 и L2 (справа возле кнопки Pair) показывают состояние радиосвязи датчика. Они активируются после включения и прибл. через 30 минут **автоматически деактивируются**. При необходимости светодиодные индикаторы можно активировать вручную с помощью кнопки Pair.

СВЕТОДИОД ТЕЛЕГРАММ

Мигание светодиода (слева возле DIP-переключателя A) информирует об активной передаче данных по шине Modbus. При повреждении проводного соединения шины Modbus светодиод непрерывно светится красным цветом.

КНОПКА СОЗДАНИЯ ПАРЫ (PAIR)

Кнопка Раіг имеет разные функции. Кратковременное нажатие на кнопку (нажать и отпустить) активирует светодиодные индикаторы состояния прибл. на 30 минут.

Долгое нажатие на кнопку (≥ 10 секунд) активирует создание пары. Деактивация выполняется автоматически после выключения режима программирования на главном шлюзе.

Нажатие на кнопку (прибл. 3 секунды) активирует Bluetooth. Светодиодный индикатор L2 мигает зеленым. Устройство становится видимым прим. на 60 секунд и может обнаруживаться приложением W-Modbus от Lumenradio. Соединение сохраняется, пока в приложении не будет нажата кнопка Disconnect или на устройстве не будет активирован режим программирования.

Подробную информацию см. в пункте «Конфигурация» (приложение W-Modbus).

СВЕТОДИОД ТЕЛЕГРАММ

ДАТЧИК W-MODBUS

pair

ПРОГРАММИРОВАНИЕ (PAIRING) «Slave»

На заводе настроен **адрес шины** «1», его можно изменить при помощи DIP-переключателей (см. пункт «Конфигурирование шины Modbus»). Изменение адреса возможно в любое время, даже после подключения к шлюзу.

Для подключения датчика W-Modbus (ведомое устройство) к главному шлюзу (ПЦУ/ПЛК) нужно перевести оба устройства в режим создания пары (режим программирования). Эти действия также необходимо выполнить, когда устройство нужно интегрировать в имеющуюся сеть. При этом связанные устройства автоматически переводятся в режим программирования и заново подключаются. Вблизи (радиус действия) может находиться только один главный шлюз в режиме создания пары!

Программирование датчика **W-Modbus** (ведомое устройство) — далее <u>датчик</u> — выполняется в три простых шага:

1.	Активация создания пары (открывание соединений)	10 c
	С завода датчик автоматически находится в режиме программирования. Ручная активация выполняется с помощью кнопки Раіг (долгое нажатие на кнопку ≥ 10 секунд).	Student Designed
	Светодиодные индикаторы состояния сигнализируют об активном режиме программирования: L1 мигает красным, L2 выключен. На устройствах с дисплеем попеременно показывается надпись [PAIRING] и настроенный адрес шины.	
	Процедура активации или деактивации режима программирования на главном шлюзе (ПЦУ/ПЛК) приведена в руководстве по эксплуатации соответствующего устройства.	pair L1 L2
2.	- Связывание устройств (установка соединения)	
	В активном режиме программирования датчик автоматически ищет главный шлюз , который находится в режиме создания пары. Этот процесс длится прибл. 1–2 минуты.	
	Светодиодные индикаторы состояния информируют о текущем процессе: L1 мигает красным — L2 светится красным. На устройствах с дисплеем сначала показывается надпись (PAIRING).	
	После этого светодиодные индикаторы состояния информируют об успешном соединении: L1 мигает зеленым — L2 светится зеленым или оранжевым (в зависимости от качества радиосвязи). На устройствах с дисплеем после установки соединения показывается надпись (CONNECTED).	pair L1 L2
	Примечание! Если связывать устройство с главным шлюзом стороннего поставщика, цветная сигнализация светодиодных индикаторов состояния отличается: L1 продолжает мигать расным — L2 светится зеленым. На дисплее по-прежнему отображается [PAIRING].	pair L1 L2
	Таким образом создается временное соединение , которое можно сделать устойчивым, как описано в 3-ем шаге. Прибл. через 2–3 минуты можно протестировать передачу данных посредством протокола Modbus и выполнить обмен данными.	
3.	 Деактивация создания пары (обеспечение устойчивого соединения)	
	Когда все устройства успешно связаны, пользователь должен вручную на главном шлюзе закончить создание пары. Это также завершает создание пары на всех связанных устройствах.	
	После этого датчик выполняет автоматическую перезагрузку и устанавливает устойчивое соединение . Передача данных посредством протокола Modbus возобновляется в течение 2—3 минут.	pair 1 2
	Светодиодные индикаторы состояния сигнализируют о выполнении перезагрузки: сначала L1 и L2 выключены. На устройствах с дисплеем кратковременно показывается надпись INO NETWORKI.	
	После этого светодиодные индикаторы состояния информируют об устойчивом соединении: L1 светится зеленым — L2 светится зеленым, оранжевым или красным (в зависимости от качества радиосвязи). На устройствах с дисплеем после установки устойчивого соединения показывается надпись (SECURED).	pair L1 L2
	Таким образом устанавливается устойчивое соединение , которое сохраняется даже после повторного включения. Может начинаться обмен данными в нормальном режиме роботы .	
	ПРИМЕЧАНИЯ	1c
→	Светодиодные индикаторы состояния выключаются (светодиоды L1 и L2 выкл.) Светодиоды автоматически выключаются через 30 минут. Светодиоды можно снова активировать с помощью кнопки Pair (кратковременное нажатие).	pan L1 L2

Сообщение об ошибке (светодиоды L1 и L2 мигают красным на устройствах с дисплеем показано [W-M ERR!].)

→ Выполнить сброс: обесточить устройство прибл. на 1 минуту, после этого запустить его. Если не удалось устранить ошибку, обратиться в службу поддержки S+S.

(W-Modbus

Протокол W-Modbus основывается на диапазоне радиочастот ISM 2,4 ГГц и использует запатентованный метод скачкообразного изменения частоты для максимальной надежности и помехоустойчивости. Таким образом обеспечивается надежная беспроводная передача и в промышленной среде.

В сети W-Modbus до 100 устройств могут обмениваться данными через шлюз на большом расстоянии (до 500 м на открытом пространстве). Стандартизованный модуль W-Modbus гарантирует совместимость со всеми устройствами W-Modbus.

Для датчиков W-Modbus нужно всего лишь предусмотреть источник питания. Вручную нужно задать только адрес ведомого устройства, параметры передачи (скорость передачи и четность) настраиваются автоматически. Согласующий резистор не нужен. После этого датчик можно подсоединить к шлюзу.

Шлюз W-Modbus можно установить в любом месте на ответвлении шины Modbus. Он представляет собой устройство для соединения проводных устройств Modbus с беспроводными устройствами W-Modbus. С помощью шлюза W-Modbus также можно легко интегрировать в существующие сети гибридные формы проводных и беспроводных устройств Modbus.

АДРЕС ШИНЫ

На заводе настроен **адрес шины** «1», его можно изменить при помощи DIP-переключателей. Изменение адреса возможно в любое время, даже после подключения к шлюзу. На устройствах с дисплеем измененный адрес показывается в течение прибл. 30 секунд.

Пример конфигурации «193»

Адрес шины (двоичный, настраиваемая значимость от 1 до 247)							DIP-переключатель [A]		
DIP 1	DIP 2	DIP 3	DIP 4	DIP 5	DIP 6	DIP 7	DIP 8		ON DIP A
0 N	ON	OFF	OFF	OFF	OFF	OFF	ON		
128	64	32	16	8	4	2	1]	12345678

Адрес прибора в диапазоне от 1 до 247 (двоичный формат) настраивается с помощью DIP-переключателя (A]. Положение переключателей, поз. от 1 до 8 — см. таблицу на обратной стороне!

Адрес О зарезервирован для сообщений сети; запрещается определять адреса больше 247; прибор будет игнорировать их. DIP-переключатели имеют двоичное кодирование со следующей значимостью:

DIP	1	=	128	 DIP	1	=	ON
DIP	2	=	64	 DIP	2	=	ON
DIP	3	=	32	 DIP	3	=	OFF
DIP	4	=	16	 DIP	4	=	OFF
DIP	5	=	8	 DIP	5	=	OFF
DIP	6	=	4	 DIP	6	=	OFF
DIP	7	=	2	 DIP	7	=	OFF
DIP	8	=	1	 DIP	8	=	ON

Данный пример показывает, что 128 + 64 + 1 = 193 — это адрес шины Modbus.

ПАРАМЕТРЫ ШИНЫ

Параметры шины для датчиков W-Modbus конфигурируются автоматически. Необходимые настройки (например, скорость передачи) выполняются прямо на шлюзе W-Modbus.

ДИАГНОСТИКА

Интегрирована функция диагностирования ошибок (см. таблицу «Функция ОВ Функция ОВ «Диагностика» (Diagnostics)»)

РЕЖИМ АРР

При помощи приложения W-Modbus от Lumenradio можно получить доступ к устройствам W-Modbus. Для этого нужно вручную активировать Bluetooth на устройстве (с помощью кнопки Pair). После этого устройство можно обнаружить и соединить с приложением. Подробную информацию см. в пункте «Ввод в эксплуатацию» (кнопка Pair).

В режиме App с помощью приложения W-Modbus от Lumenradio можно получить доступ к шлюзу:

- Обновление микропрограммного обеспечения радиомодуля
- Распознавание ошибок (одинаковые адреса шины, ошибки передачи данных и другое)
- Индивидуальные названия устройств
- Проверка структуры сети
- Документирование структуры сети (PDF)

Подробную информацию см. в справке приложения. Приложение доступно для мобильных устройств Android и Apple в магазине приложений.

Ссылка на приложение W-Modbus от Lumenradio для устройств Apple: https://apps.apple.com/de/app/w-modbus/id6472275984

Ссылка на приложение W-Modbus от Lumenradio для устройств Android: https://play.google.com/store/apps/details?id=com.lumenradio.wmodbus

(« W-Modbus

ИНДИКАЦИЯ НА ДИСПЛЕЕ

Отображаемое значение зависит от настроенной системы единиц (см. таблицу «Функция 05 — Запись значения одного флага (Write Single Coil)»). При необходимости можно переключить устройство с СИ (по умолчанию) на английскую систему мер.

Стандартная индикация

Стандартно в первой строке статично отображается значение, а во второй — соответствующая единица измерения: температура [°C] [°F]. Разрешение составляет 1/10 от значения.

Индикация ошибки

Распознавание обрыва и короткого замыкания датчика, сообщение об **ошибке**, отображение сообщения на экране прибора. Путем отправки запроса на шину можно также узнать состояние ошибки.

Обрыв датчика

1ндикация	на	дисплее:	999.9
Сообщение	об	ошибке:	Err1

Короткое замыкание датчика

Индикация	на	дисплее:	- 999.9
Сообщение	об	ошибке:	Err2

Свободно настраиваемый дисплей (Tyr 3)

Посредством шинного интерфейса дисплей можно программировать как в 7-сегментном поле, так и в поле с точечной матрицей. Так, например, можно отображать сообщения, получаемые от ПЛК.

Для **индивидуальной индикации** регистр 4x0001 (физическое значение) должен содержать значение 10.

Регистры от 4x0002 до 4x0022 содержат сведения об отображаемых символах и сегментах. Обе выровненные по левому краю позиции отображаются с помощью регистра 4x0003 (диапазон –9...99). Значение О выключает индикацию обеих позиций. Индикация активна, только если регистр 4x0002 содержит положительные значения.

В настройке по умолчанию (регистр 4x0001 содержит значение 0 для стандартной индикации) также можно свободно запрограммировать в поле с точечной матрицей символы I–Q (регистры от 4x0014 до 4x0022). При этом в 7-сегментном поле будут отображаться текущие измеренные значения.

Продолжение на следующей странице!

Пример структуры сегментного поля (регистр 4х0005)

Таблица кодов ASCII для полей с точечной матрицей

ASCII	Sign	
32	Пробел	
33	!	
34	"	
35	#	
36	\$	
37	%	
38	&	
40	(
41)	
42	*	
43	+	
44	,	
45	-	
46		
47	/	
48	0	
49	1	
50	2	
51	3	
52	4	

SCII	Sign	
53	5	
54	6	
55	7	
56	8	
57	9	
58	:	
59	;	
60	<	
61	=	
62	>	
63	?	
64	0	
65	Α	
66	В	
67	С	
68	D	
69	E	
70	F	
71	G	
72	н	

ASCII	Sign
73	I
74	J
75	К
76	L
77	М
78	N
79	0
80	Р
81	Q
82	R
83	S
84	Т
85	U
86	V
87	W
88	Х
89	Y
90	Z
91	[
93	1

ASCII	Sign
94	^
95	_
96	\
97	а
98	b
99	С
100	d
101	е
102	f
103	g
104	h
105	i
106	j
107	k
108	I
109	m
110	n
111	o
112	р
113	a

ASCII	Sign
114	r
115	S
116	t
117	u
118	v
119	w
120	х
121	у
122	z
123	{
124	
125	}
129	ü
132	ä
142	Ä
148	ö
153	Ö
154	Ü
223	٥

Неуказанные в таблице символы ASCII или управляющие символы отображаются в виде пробела.

ТЕЛЕГРАММЫ

Функция 04 — Чтение регистров ввода (Read Input Register)

Регистр	Параметр		Тип данных	Значение	Диапазон	
3x0001	Температура	Без фильтрации	Со знаком 16 бит	-500+1500 -580+3020 -999+9999	– 50.0 +150.0 °C – 58.0 +302.0 °F Выбег	
3x0002	Температура	Фильтрация 1 с	Со знаком 16 бит	- 500+ 1500 - 580+ 3020 - 999+ 9999	– 50.0 +150.0 °C – 58.0 +302.0 °F Выбег	
3x0003	Температура	Фильтрация 10 с	Со знаком 16 бит	-500+1500 -580+3020 -999+9999	– 50.0 +150.0 °C – 58.0 +302.0 °F Выбег	

Функция 02 — Запись значения в один регистр хранения (Write Multiple Register)

Регистр	Параметр	Тип данных	Значение	Диапазон
0x0001	Ошибка датчика — обрыв	Бит О	0 / 1	ON - OFF
0x0002	Ошибка датчика — короткое замыкание	Бит 1	0 / 1	ON - OFF

Примечание: адреса от 1x0003 до 1x0008 читаются со значением «О».

Функция 05 — Запись значения одного флага (Write Single Coil)

Регистр	Параметр			Тип данных	Значение	Диапазон
0x0001	зарезервировано					
0x0002	Система единиц	СИ → Импер. ед		Бит 1	0 / 1	СИ (Default) -
	Температура	[°C]	→ [°F]			Импер. ед.

Регистр	Параметры (дисплей)	Тип данных	Значение	Диапазон	
4x0001	Физическое значение*	Без знака 8 бит	010	010	
	Стандартная индикация: Температура		0	Настройка по умолчанию	
	Альтернативная индикация: Настраиваемая индикация		10		
4x0002	7-сегментное значение	Со знаком 16 бит	-9999999	-9999999	
4x0003	7-сегментное значение	Со знаком 8 бит	-999	-999	
4x0004	-				
4x0005	Пример сегментного поля	Без знака 16 бит		см. битовую комбинацию	
4x0006	Точечная матрица, символ А	Без знака 8 бит	0255	Символ ASCII	
4x0007	Точечная матрица, символ В	Без знака 8 бит	0255	Символ ASCII	
4x0008	Точечная матрица, символ С	Без знака 8 бит	0255	Символ ASCII	
4x0009	Точечная матрица, символ D	Без знака 8 бит	0255	Символ ASCII	
4x0010	Точечная матрица, символ Е	Без знака 8 бит	0255	Символ ASCII	
4x0011	Точечная матрица, символ F	Без знака 8 бит	0255	Символ ASCII	
4x0012	Точечная матрица, символ G	Без знака 8 бит	0255	Символ ASCII	
4x0013	Точечная матрица, символ Н	Без знака 8 бит	0255	Символ ASCII	
4x0014	Точечная матрица, символ I	Без знака 8 бит	0255	Символ ASCII	
4x0015	Точечная матрица, символ J	Без знака 8 бит	0255	Символ ASCII	
4x0016	Точечная матрица, символ К	Без знака 8 бит	0255	Символ ASCII	
4x0017	Точечная матрица, символ L	Без знака 8 бит	0255	Символ ASCII	
4x0018	Точечная матрица, символ М	Без знака 8 бит	0255	Символ ASCII	
4x0019	Точечная матрица, символ N	Без знака 8 бит	0255	Символ ASCII	
4x0020	Точечная матрица, символ О	Без знака 8 бит	0255	Символ ASCII	
4x0021	Точечная матрица, символ Р	Без знака 8 бит	0255	Символ ASCII	
4x0022	Точечная матрица, символ Q	Без знака 8 бит	0255	Символ ASCII	

Функция 06 — Запись значения в один регистр хранения (Write Single Register) и Функция 16 — Запись значений в несколько регистров хранения (Write Multiple Register)

* Отображаемое значение зависит от настроенной системы единиц

(см. таблицу «Функция 05 — Запись значения одного флага (Write Single Coil)»)

Функция 08 — Диагностика (Diagnostics)

Поддерживаются следующие коды подфункции

Код подфункции	Параметр	Тип данных	Ответ
00	Эхо отправленных данных (Loopback)		Данные эхо
01	Перезапуск Modbus (Reset Listen Only Mode)		Телеграмма эхо
04	Активация (Listen Only Mode)		Без ответа
10	Сброс счетчиков		Телеграмма эхо
11	Счетчик телеграмм шины	Без знака 16 бит	Все действительные телеграммы шины
12	Счетчик ошибок связи (четность, цикличе- ская проверка четности с избыточностью (CRC), ошибка фрейма и т. д.)	Без знака 16 бит	Телеграммы шины с ошибками
13	Счетчик исключительных сообщений	Без знака 16 бит	Счетчик ошибок
14	Счетчик телеграмм ведомого устройства	Без знака 16 бит	Телеграммы ведомого устройства
15	Счетчик телеграмм без ответа	Без знака 16 бит	Сообщения сети (адрес О)

Функция 17 — Чтение информации об устройстве (Report Slave ID) Структура телеграммы ответа

Бит №	Параметр	Тип данных	Ответ
00	Количество байт	Без знака 8 бит	9
01	Идентификатор ведомого устройства (тип устройства)	Без знака 8 бит	3 = THERMASGARD [®] xx-wModbus (Tyr3)
02	Идентификатор ведомого устройства (класс устройства)	Без знака 8 бит	$80 = KYMASGARD^{(8)}$ (Wireless)
03	Состояние	Без знака 8 бит	255 = RUN, 0 = STOP
04	Номер версии (выпуск)	Без знака 8 бит	19
05	Номер версии (версия)	Без знака 8 бит	199
06	Номер версии (индекс)	Без знака 8 бит	1
07	Серийный номер 1	Без знака 8 бит	ХХ
08	Серийный номер 2	Без знака 8 бит	YY
09	Серийный номер З	Без знака 8 бит	ZZ

THERMASGARD® xx - wModbus

© Copyright by S+S Regeltechnik GmbH

Nachdruck, auch auszugsweise, nur mit Genehmigung der S+S Regeltechnik GmbH. Reprint in full or in parts requires permission from S+S Regeltechnik GmbH. La reproduction des textes même partielle est uniquement autorisée après accord de la société S+S Regeltechnik GmbH. Перепечатка, в том числе в сокращенном виде, разрешается лишь с согласия S+S Regeltechnik GmbH.

Irrtümer und technische Änderungen vorbehalten. Alle Angaben entsprechen unserem Kenntnisstand bei Veröffentlichung. Sie dienen nur zur Information über unsere Produkte und deren Anwendungsmöglichkeiten, bieten jedoch keine Gewähr für bestimmte Produkteigenschaften. Da die Geräte unter verschiedensten Bedingungen und Belastungen eingesetzt werden, die sich unserer Kontrolle entziehen, muss ihre spezifische Eignung vom jeweiligen Käufer bzw. Anwender selbst geprüft werden. Bestehende Schutzrechte sind zu berücksichtigen. Einwandfreie Qualität gewährleisten wir im Rahmen unserer Allgemeinen Lieferbedingungen.

Subject to errors and technical changes. All statements and data herein represent our best knowledge at date of publication. They are only meant to inform about our products and their application potential, but do not imply any warranty as to certain product characteristics. Since the devices are used under a wide range of different conditions and loads beyond our control, their particular suitability must be verified by each customer and/or end user themselves. Existing property rights must be observed. We warrant the faulties quality of our products as stated in our General Terms and Conditions.

Sous réserve d'erreurs et de modifications techniques. Toutes les informations correspondent à l'état de nos connaissances au moment de la publication. Elles servent uniquement à informer sur nos produits et leurs possibilités d'application, mais n'offrent aucune garantie pour certaines caractéristiques du produit. Etant donné que les appareils sont soumis à des conditions et des sollicitations diverses qui sont hors de notre contrôle, leur adéquation spécifique doit être vérifiée par l'acheteur ou l'utilisateur respectif. Tenir compte des droits de propriété existants. Nous garantissons une qualité parfaite dans le cadre de nos conditions générales de livraison.

Возможны ошибки и технические изменения. Все данные соответствуют нашему уровню знаний на момент издания. Они представляют собой информацию о наших изделиях и их возможностях применения, однако они не гарантируют наличие определенных характеристик. Поскольку устройства используются при самых различных условиях и нагрузках, которые мы не можем контролировать, покупатель или пользователь должен сам проверить их пригодность. Соблюдать действующие права на промышленную собственность. Мы гарантируем безупречное качество в рамках наших «Общих условий поставки».

D GB USA F RU

Busadresse, binärcodiert Bus address, binary coded Adresse du bus, code binaire Адресс шины, двоичный

1		51		101		151		201	
2		52		102		152		202	
3		53		103		153		203	
4		54		104		154		204	
5		55		105		155		205	
6		56		106		156		206	
7		57		107		157		207	
8		58		108		158		208	
9		59		109		159		209	
10		60		110		160		210	
11		61		111		161		211	
12		62		112		162		212	
13		63		113		163		213	
14		64		114		164		214	
15		65		115		165		215	
16		66		116		166		216	
17		67		117		167		217	
18		68		118		168		218	
19		69		119		169		219	
20		70		120		170		220	
21		71		121		171		221	
22		72		122		172		222	
23		73		123		173		223	
24		74		124		174		224	
25		75		125		175		225	
26		76		126		176		226	
27		77		127		177		227	
28		78		128		178		228	
29		79		129		179		229	
30		80		130		180		230	
31		81		131		181		231	
32		82		132		182		232	
33		83		133	04444040	183	01001000	233	00040440
34		84		134		184		234	
35		85		135		185		235	
36		86		136		186		236	
37		87		137		187		237	
38		88		138		188		238	
39		89		139		189		239	
40		90		140		190		240	
41		91		141		191		241	
42		92		142		192		242	
43		93		143		193		243	
44		94		144		194		244	
45		95 0 (145		195		245	
46		96 07		146		196		246	
47		97		147		197		247	UUUUW000
48		78		148		198			
49		77 100		149		199			
50	M M O O M M O M O M O M O M O M O M O M	100	80088088	150	0000000	200			